Hydrographic Relationships and Nutrient Dynamics in Coastal Waters of Pulau Tuan, Aceh Besar, Indonesia

Main Article Content

Muammar Irfan
Khairunnisa Khairunnisa
Safruddin Safruddin
Lismawinda Lismawinda
Khairul Akbar
Putri Hilda Purnama Sari
Reviyanti Wulandari

Abstract


This study aimed to examine the relationship between temperature, salinity, and water mass circulation; determine the trophic status of waters through chlorophyll-a concentrations; and analyze nitrate and phosphate levels using spectrophotometry. Water sampling was conducted during both high and low tides. Chlorophyll-a levels during high tide were 0.00217 mg/L (T1A01) and 0.005673 mg/L (T3A01), while during low tide, values were 0.005045 mg/L (T1A01) and 0.002907 mg/L (T3A01). Nitrate concentrations at high tide were 730 µg/L (T1A01) and 875 µg/L (T3A01), increasing to 840 µg/L and 862 µg/L during low tide. Phosphate levels were 58.53 µg/L (T1A01) and 61.35 µg/L (T3A01) during high tide, and 65.75 µg/L and 68.85 µg/L during low tide, respectively. The results indicate temporal and spatial variations in nutrient concentrations and primary productivity indicators, reflecting dynamic coastal water characteristics.


Article Details

Section
Original Research

References

1. Bourdonnais, E.; Bris, C.; Brauge, T.; Midelet, G. Monitoring indicator genes to assess antimicrobial resistance con-tamination in phytoplankton and zooplankton communities from the English Channel and the North Sea. Front. Microbiol. 2024, 15, 1313056.

2. Carlos, A.; Richard, D.; Gladys, T. Main functional groups of the plankton in front of the fishing port of Anconcito, Santa Elena–Ecuador. J. Pharm. Negat. Results 2022, 13(s09), 35–51.

3. García, B.; Fernández-Manteca, M.; Gómez-Galdós, C.; Álvarez, S.; Monteoliva, A.; Higuera, J. Integration of fluores-cence spectroscopy into a photobioreactor for the monitoring of cyanobacteria. Biosensors 2025, 15(3), 128.

4. Giraldo, C.; Ernande, B.; Cresson, P.; Kopp, D.; Cachera, M.; Travers-Trolet, M.; et al. Depth gradient in the resource use of a fish community from a semi-enclosed sea. Limnol. Oceanogr. 2017, 62(5), 2213–2226.

5. Aprilia, M.; Effendi, H.; Hariyadi, S.; Permatasari, P. Spatial and temporal distribution of nutrients in the Ciliwung Riv-er, DKI Jakarta. IOP Conf. Ser. Earth Environ. Sci. 2024, 1328(1), 012005.

6. Gulis, V.; Suberkropp, K. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw. Biol. 2003, 48(1), 123–134.

7. Nur, T.; Shim, W.; Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Nitrate removal using Purolite A520E ion ex-change resin: Batch and fixed-bed column adsorption modelling. Int. J. Environ. Sci. Technol. 2014, 12(4), 1311–1320.

8. Safitri, F.; Sulistiono, S.; Hariyadi, S. Aquatic physical and chemical characteristics of reservation and prohibited ar-eas of mahseer (Tor douronensis Valenciennes, 1842) in Jambi Province, Indonesia. E3S Web Conf. 2021, 322, 01010.

9. Mani, S.; Kadolkar, R.; Prajapati, T.; Ahuja, P.; Shajahan, M.; Lee, J.; et al. Microfluidic-electrochemical sensor utiliz-ing statistical modeling for enhanced nitrate detection in surface water towards environmental monitoring. Analyst 2025, 150(10), 2179–2189.

10. Leitzke, T.; Downey, J.; LaDouceur, R.; Margrave, D.; Wallace, G.; Hutchins, D. Water treatment method for removal of select heavy metals and nutrient ions through adsorption by magnetite. ACS ES&T Water 2022, 2(9), 1584–1592.

11. Mutiti, S.; Sadowski, H.; Melvin, C.; Mutiti, C. Effectiveness of man-made wetland systems in filtering contaminants from urban runoff in Milledgeville, Georgia. Water Environ. Res. 2015, 87(4), 358–368.

12. Bain, A.; Gibson, B.; Lightbourne, B.; Forbes, K.; Gustave, W. Enhanced nutrient removal from freshwater through microbial fuel cells: The influence of external resistances. Preprint 2025.

13. Al-Taee, I.; Al-Khafaji, A.; Radhi, R. Assessment of water quality for Al-Salibat Marsh, Southern Iraq. IOP Conf. Ser. Earth Environ. Sci. 2024, 1325(1), 012002.

14. Baker, K.S.; McKee, D.A.; Hannan, B.A. The impact of tidal regimes on phytoplankton dynamics in coastal systems. J. Mar. Biol. Assoc. 2021, 101(5), 897–909.

15. Fowler, A.S.; Newton, R.J.; Keith, D.S. Effects of tidal cycles on nutrient dynamics and phytoplankton biomass. Es-tuar. Coast. Shelf Sci. 2020, 243, 106897.

16. Akita, L.; Laudien, J.; Biney, C.; Akrong, M. A baseline study of spatial variability of bacteria (total coliform, E. coli, and Enterococcus spp.) as biomarkers of pollution in ten tropical Atlantic beaches: Concern for environmental and public health. Environ. Sci. Pollut. Res. 2021, 28(36), 50941–50965.

17. Junaidi, M.; Cokrowati, N.; Diniarti, N.; Setyono, B.; Mulyani, L. Identifying the environmental factors affecting puerulus settlement of the spiny lobster, Panulirus homarus, in Awang Bay, Lombok Island. Asian J. Fish. Aquat. Res. 2022, 1–14.

18. Marzetz, V.; Spijkerman, E.; Striebel, M.; Wacker, A. Phytoplankton community responses to interactions between light intensity, light variations, and phosphorus supply. Front. Environ. Sci. 2020, 8, 85.

19. Azad, S.; Romin, M.; Saleh, E. Spatial and temporal variations of dissolved inorganic nutrients and relationship with phytoplankton density in coastal water of Kudat, Sabah, Malaysia. J. Geosci. Environ. Prot. 2023, 11(12), 229–240.

20. Cherotich, E.; Nyabaro, O.; Rayori, D.; Kenanda, E. Assessment of Chemosit River pollution with urbanization of Chemosit Centre, Kericho County, Kenya. Pan Afr. Sci. J. 2024, 3, 55–63.