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Abstract: Federated Learning (FL) enables decentralized model 
training across distributed clients without sharing raw data, pre-
serving user privacy and data security. Despite its advantages, FL 
faces major challenges due to heterogeneity in client data distri-
butions (non-IID data) and system capabilities (compute power, 
availability, bandwidth). These imbalances lead to inefficient 
training, slower convergence, and unfair contribution across cli-
ents. To address these issues, we propose Adaptive Federated 
Learning with Client Profiling (AFL-CP), a lightweight framework 
that dynamically assesses clients based on data utility, training 
reliability, and computational efficiency. Using this profiling, 
AFL-CP adjusts both client participation and aggregation weights 
to improve model convergence and representation. We evaluate 

AFL-CP on CIFAR-10 and FEMNIST under non-IID settings, demonstrating up to 45% faster convergence, 1.5–2% improve-
ment in test accuracy, and significantly enhanced fairness as measured by the Gini coefficient. Unlike prior approaches, 
AFL-CP maintains inclusivity by avoiding exclusion of low-resource clients, while still favoring high-quality updates. Our 
results suggest that AFL-CP offers a scalable and practical enhancement to traditional federated learning, supporting more 
efficient and equitable model training in real-world deployments. 
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1. Introduction 
Federated Learning (FL) is a decentralized machine learning paradigm that enables multiple clients to collaboratively 

train a shared global model without sharing raw data, thus preserving privacy and complying with regulatory constraints [1], 
[4]. The seminal FedAvg algorithm by McMahan et al. introduced iterative model averaging across devices and demon-
strated its effectiveness even under non-IID and unbalanced data distributions, reducing communication rounds by 10–
100× compared to synchronized SGD [1], [2]. Nonetheless, FL faces significant challenges due to client heterogeneity in 
two main dimensions. First, statistical heterogeneity arises when clients’ local data distributions differ, often severely, e.g., 
when each client sees data from only a single class in CIFAR-10, FedAvg’s accuracy drops by as much as ~55% [3]. Second, 
system heterogeneity stems from variability in clients’ computation power, memory, bandwidth, and availability, leading to 
asynchronous delays or dropped updates that compromise fairness and training efficiency [4]. Furthermore, these two het-
erogeneity aspects can interact in detrimental ways; low-resource clients holding unique or skewed data may be un-
derrepresented or produce stale updates that destabilize the global model. Prior work has sought to address these issues 
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via shared data subsets [3], gradient compression, client selection heuristics, and proximal regularization techniques [4]. 
However, most existing approaches rely on static assumptions or prior knowledge of client characteristics. In contrast, we 
propose Adaptive Federated Learning with Client Profiling (AFL-CP), a novel framework that dynamically profiles clients in 
real time, evaluating compute capability, data quality, and reliability history to inform adaptive aggregation, weighting, and 
participation scheduling. We validate AFL-CP on CIFAR-10 and FEMNIST, demonstrating faster convergence, higher global 
accuracy, and improved client fairness compared to FedAvg and recent baselines. 

2. Results 
To evaluate the effectiveness of our proposed method, Adaptive Federated Learning with Client Profiling (AFL-CP), we 

conducted experiments on two benchmark datasets: CIFAR-10 and FEMNIST. We compared AFL-CP against the standard 
FedAvg algorithm, as well as two competitive baselines, FedProx and CCVR, under a non-IID data partitioning scheme using 
a Dirichlet distribution with α = 0.5 across 30 clients. 

2.1. Convergence Speed 

AFL-CP demonstrated a significantly faster convergence rate than all baselines. On the CIFAR-10 dataset, it reached 
90% of its maximum accuracy in only 5 communication rounds, compared to 9 for FedAvg, 8 for FedProx, and 7 for CCVR. 
On FEMNIST, AFL-CP required 8 rounds, whereas FedAvg needed 12, FedProx 11, and CCVR 10 rounds (Table 1). 

 
Table 1. Rounds to Reach 90% Maximum Accuracy. 

Method CIFAR-10 FEMNIST 

FedAvg 9 12 

FedProx 8 11 
CCVR 7 10 

AFL-CP 5 8 

 

2.2. Test Accuracy 

All Final test accuracy also improved with AFL-CP. On CIFAR-10, it achieved 83.5%, compared to 80.2% with FedAvg, 
81.1% with FedProx, and 82.0% with CCVR. For FEMNIST, AFL-CP reached 77.8%, surpassing FedAvg (74.5%), FedProx 
(75.3%), and CCVR (76.1%), as shown in Table 2. 

 
Table 2. Final Test Accuracy (%). 

Method CIFAR-10 FEMNIST 

FedAvg 80.2 74.5 

FedProx 81.1 75.3 

CCVR 82.0 76.1 

AFL-CP 83.5 77.8 

 

2.3. Fairness of Client Participation 

To measure fairness, we calculated the Gini coefficient of the clients’ aggregated weight distribution across training 
rounds. AFL-CP yielded a Gini coefficient of 0.18, significantly lower than FedAvg (0.32), FedProx (0.29), and CCVR (0.27), 
indicating more balanced client participation (Table 3). 
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Table 3. Gini Coefficient of Client Weights. 

Method Gini Coefficient 

FedAvg 0.32 

FedProx 0.29 

CCVR 0.27 

AFL-CP 0.18 

 

3. Discussion 
The results of our experiments clearly demonstrate that Adaptive Federated Learning with Client Profiling (AFL-CP) 

addresses multiple persistent challenges in federated learning (FL), particularly those emerging from client heterogeneity. 
In this section, we explore the implications of AFL-CP in greater detail, focusing on efficiency, accuracy, fairness, and prac-
tical limitations, while also situating our approach within the context of recent FL literature. 

 
3.1 Efficiency and Convergence Acceleration 

Convergence speed is a critical metric in federated learning, as communication between clients and the central 
server often constitutes the most significant bottleneck in real-world FL deployments. AFL-CP accelerates convergence by 
up to 45% compared to FedAvg and other baselines, reaching 90% of the maximum accuracy in 5–8 rounds, versus 9–12 
rounds for the alternatives. This improvement is especially important in mobile, edge, or bandwidth-limited scenarios 
where reducing communication rounds can extend device battery life, reduce operational costs, and make real-time per-
sonalization feasible. 

 

 

Figure 1. Comparison on test accuracy vs communication rounds for AFL-CP and FedAvg (CIFAR-10). 

 
This efficiency arises from the intelligent selection and weighting of clients based on dynamic profiling. By deprioritiz-

ing clients that are computationally slow or unreliable without permanently excluding them, AFL-CP maintains diversity 
while enhancing stability. These findings align with prior work in adaptive client selection strategies such as FedGRA [11] 
and FedSDR [12], which also observe convergence gains by integrating client metrics into the aggregation or selection pipe-
line. However, AFL-CP distinguishes itself by not requiring reinforcement learning or complex optimization models, instead 
relying on lightweight profiling that can be updated in real time. 
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3.2 Accuracy and Robustness in Non-IID Settings 
A central challenge in FL is the presence of statistically heterogeneous (non-IID) data across clients. Standard algo-

rithms like FedAvg assume an IID setting, which rarely holds in practice. AFL-CP improves final test accuracy by approxi-
mately 1.5–2% over competitive baselines, confirming its ability to cope with skewed distributions. This improvement is 
achieved by dynamically assigning weights to client updates based not only on dataset size or loss but also on quality indi-
cators such as data class diversity and update consistency. 

Such performance enhancement is corroborated by studies on adaptive and personalized FL strategies, including 
FedRL [15], which uses reward-based learning to calibrate update importance, and ensemble-based frameworks that tailor 
global models to reflect the representativeness of each client’s data [19]. AFL-CP contributes to this line of research by 
simplifying the approach: instead of training multiple models or tuning reinforcement agents, it relies on interpretable and 
accessible profiling indicators. 

Moreover, AFL-CP’s adaptability ensures that it maintains strong performance not just on CIFAR-10, a common FL 
benchmark, but also on FEMNIST, which is a more realistic and complex non-IID setting due to its user-level label imbal-
ance. This generalizability across datasets strengthens the claim that profiling-based adaptation is a practical solution to 
data heterogeneity in federated contexts. 

 
3.3 Fairness and Equitable Client Participation 

Federated learning is often promoted for its potential to democratize AI and ensure inclusivity by enabling edge par-
ticipation. However, without appropriate balancing mechanisms, dominant clients—those with large, representative da-
tasets and powerful hardware—can disproportionately influence the global model, marginalizing others. AFL-CP addresses 
this through weighted aggregation that accounts for historical participation, reliability, and representativeness, thus pro-
moting equity. 

 

 

Figure 1. Gini coefficients for FedAvg, FedProx, CCVR, and AFL-CP. 

 
We quantify fairness using the Gini coefficient, a widely accepted metric for measuring inequality. AFL-CP reduces 

the Gini coefficient to 0.18, significantly outperforming FedAvg (0.32) and other baselines. This result aligns with work in 
fairness-aware FL, such as FairFedCS [20] and DQFFL [22], which use policy-learning and resource-aware mechanisms to 
achieve similar improvements. Importantly, AFL-CP achieves fairness as a side-effect of performance optimization rather 
than through explicit fairness constraints, making it computationally lightweight and easier to deploy. 

From a systems perspective, fairness is not just a social or ethical concern—it directly affects system reliability and 
client retention. Clients that consistently contribute but see minimal impact on the global model may opt out or behave 
adversarially. By ensuring that contributions are recognized and weighted appropriately, AFL-CP enhances both technical 
robustness and user trust, which are essential for long-term FL success. 
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3.4 Limitations, Scalability, and Future Work 
While AFL-CP provides significant benefits, several limitations must be acknowledged. The core mechanism of 

AFL-CP involves collecting and utilizing client-side meta-information such as training time, model update variance, data 
skew metrics, and past reliability. Although these metrics are lightweight and do not include raw data, their collection may 
raise privacy concerns in certain jurisdictions or among privacy-conscious clients. Future work should explore privacy-pre-
serving profiling, such as using differentially private or encrypted telemetry to protect meta-data [5], [8]. 

Another concern is scalability. Our experiments used 30 clients per round in a simulated environment, which is rea-
sonable for many FL settings, but real-world deployments—such as those by Google on mobile phones—may involve thou-
sands or millions of clients. At this scale, even lightweight profiling introduces overhead. Techniques such as profile cach-
ing, stochastic client sampling, or decentralized aggregation (e.g., using gossip protocols or hierarchical FL) could mitigate 
this issue. Research into decentralized or client-driven aggregation schemes [23] may offer solutions that maintain 
AFL-CP’s advantages while scaling gracefully. 

Lastly, AFL-CP currently applies the same profiling model across all tasks and datasets. While effective, this may not 
be optimal in highly dynamic environments or where task semantics vary widely. Extending AFL-CP to support task-aware 
profiling, meta-learning strategies, or even federated profiling models (learned across clients) could unlock further improve-
ments.highlighted. 

4. Materials and Methods 

4.1. Dataset 

We conducted our experiments using two widely recognized datasets for federated learning research: CIFAR-10 and 
FEMNIST. The CIFAR-10 dataset comprises 60,000 color images across 10 classes, with 50,000 training and 10,000 test 
samples. For the purposes of simulating a non-IID federated learning environment, the dataset was partitioned among 30 
clients using a Dirichlet distribution with a concentration parameter α = 0.5. This partitioning strategy ensured that each 
client received a skewed and distinct subset of the overall data. The FEMNIST dataset, drawn from the LEAF benchmark 
suite, contains grayscale handwritten character images collected from individual users. In this setup, each client repre-
sents a single writer, resulting in naturally non-IID data distributions with high variability in label coverage and sample quan-
tity per client. 

4.2. Simulation Environment 

We implemented a federated learning simulation environment using PyTorch integrated with the Flower federated 
learning framework. The server orchestrates each communication round by selecting a subset of clients to participate. Se-
lected clients download the current global model, perform one epoch of local training using mini-batch stochastic gradient 
descent (SGD), and then upload their model updates to the server. The server then aggregates these updates to produce a 
new global model. To emulate real-world conditions, clients were randomly assigned varying computational capacities and 
network stability profiles. These variations introduced asynchronous delays, dropouts, and differences in local training per-
formance across rounds. 

4.3. Model Architectures 

For the CIFAR-10 experiments, we used a convolutional neural network (CNN) consisting of two convolutional layers 
with ReLU activation and max pooling, followed by a fully connected dense layer. This simple yet effective architecture is 
commonly used in FL experiments for CIFAR-10. For FEMNIST, we used a CNN architecture aligned with the one described 
in the LEAF benchmark papers, which is well-suited for grayscale character classification tasks. Both models were trained 
using SGD with a learning rate of 0.01 and a batch size of 32. Each client performed one local training epoch per communi-
cation round. 

4.4. Client Profiling Strategy 

A core component of our approach is the client profiling mechanism, which assesses each client’s utility for the global 
training process based on three dimensions. The first dimension is data skew, which quantifies the entropy of the label 
distribution in a client’s local dataset. Clients with more balanced class distributions are assigned higher scores. The sec-
ond dimension is reliability, determined by tracking a client’s historical participation rate and dropout frequency. Clients 
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that consistently complete training and contribute updates are considered more reliable. The third dimension is computa-
tion speed, measured as the average time a client takes to complete local training. Faster clients receive higher scores to 
promote efficient convergence. Each of these metrics is normalized to a range of [0, 1], and combined to compute a single 
profiling score for each client. The final score is calculated as a weighted sum of the three metrics, with default weights set 
equally at one-third for each component. 

4.5. Adaptive Aggregation Mechanism 

Instead of using uniform weighting like in FedAvg, AFL-CP aggregates client model updates using both the number of 
local training samples and the computed profiling score. Specifically, each client’s contribution to the global model is 
weighted proportionally to the product of its sample count and profiling score. This enables the server to favor clients that 
offer high-quality, reliable, and computationally efficient updates, while still including lower-performing clients in a scaled-
down manner. This strategy ensures more stable learning and better representation across heterogeneous clients. 

4.6. Evaluation Metrics 

To evaluate the performance of AFL-CP, we tracked three key metrics. The first was test accuracy, computed using a 
global test set held out from training. The second was convergence speed, measured by the number of communication 
rounds required to reach 90% of the final test accuracy. The third was fairness of client participation, quantified using the 
Gini coefficient, which measures inequality in aggregated client contributions over the training process. A lower Gini coef-
ficient indicates a fairer and more balanced participation among clients. Each experiment was repeated three times with 
different random seeds, and we report the average results across trials. 

5. Conclusions 
In conclusion, AFL-CP represents a significant advancement in federated learning under heterogeneity. It improves 

convergence efficiency, enhances accuracy under non-IID data distributions, and ensures fairer participation across a di-
verse client pool—all without complex model restructuring or excessive computational cost. These findings suggest that 
real-time client profiling is not just an auxiliary enhancement but a foundational tool for robust and scalable federated AI 
systems. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AI Artificial Intelligence 

AFL-CP Adaptive Federated Learning with Client Profiling 

CNN Convolutional Neural Network 

FL Federated Learning 
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IID Independent and Identically Distributed 

non-IID Non-Independent and Identically Distributed 

SGD Stochastic Gradient Descent 

CCVR Class-Calibrated Variance Reduction 

FedAvg Federated Averaging 

FedProx Federated Proximal Optimization 

FEMNIST Federated Extended MNIST 

CIFAR-10 Canadian Institute for Advanced Research 10-class Dataset 

LEAF Benchmark Suite for Federated Settings 

RL Reinforcement Learning 
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