

In Vitro Antibacterial Bioassay of Methanol Extract Fraction ($R_f > 0.5$) from *Rhizophora mucronata* L. (Rhizophoraceae) Leaves Against Multidrug-Resistant *Escherichia coli*

Nurhafiza Nurhafiza^{1,*} and Sri Agustina¹

¹ Department of Marine Science, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

Abstract

A bioactivity evaluation was carried out in January 2018 on the methanolic leaf extract fraction ($R_f > 0.5$) of *Rhizophora mucronata* L. (Rhizophoraceae) against antibiotic-resistant *Escherichia coli*. Isolation of secondary metabolites was conducted at the Marine Chemistry Laboratory, Faculty of Marine and Fisheries, while antibacterial assays were performed at the Microbiology Laboratory, Faculty of Medicine, Universitas Syiah Kuala. Thin-layer chromatography (TLC) was employed to identify bioactive fractions, and phytochemical screening indicated the presence of alkaloid constituents. The tested extract exhibited inhibition zones ranging from 7.50 to 8.50 mm, reflecting moderate antibacterial activity against resistant *Escherichia coli* strains.

Keywords: *Rhizophora mucronata* leaves, alkaloids, antibacteria-resistant *Escherichia coli*.

1 Introduction

Escherichia coli (*E.coli*) is a gram-negative bacterium that naturally inhabits the gastrointestinal tract of humans and animals. Although most strains are commensal, pathogenic variants such as Enteropathogenic *E. coli* (EPEC) can cause severe gastrointestinal infections, particularly in immunocompromised populations including infants, young children, the elderly, and hospitalized patients [1]. Transmission is primarily associated with fecal contamination and poor environmental sanitation [2]. Globally, diarrheal diseases remain a major public health burden, with an estimated 1.8 billion cases reported annually, many of which are linked to pathogenic *E. coli* infections [3].

Clinically, diarrheal infections are frequently treated with synthetic -lactam antibiotics such as chloramphenicol [4]. However, prolonged and indiscriminate use of chloramphenicol has been associated with serious adverse effects, including aplastic anemia, granulocytopenia, gastrointestinal disturbances, and hypersensitivity reactions [5]. More critically, sustained exposure to antibiotics has accelerated the emergence of resistant *E. coli* strains, complicating treatment strategies and increasing therapeutic failure rates [6]. The growing threat of antimicrobial resistance underscores the urgent

Academic Editor:
Andi Setiawan

Submitted: June 6, 2025
Accepted: June 24, 2025
Published: June 26, 2025

Vol. 1, No. 1, 2025.
<https://dx.doi.org/xx.xxxx/xxxxxx>

*Corresponding author:
Nurhafiza Nurhafiza
nurhafizaikl@gmail.com

Citation

Nurhafiza, N., & Agustina, S. (2025). In Vitro Antibacterial Bioassay of Methanol Extract Fraction ($R_f > 0.5$) from *Rhizophora mucronata* L. (Rhizophoraceae) Leaves Against Multidrug-Resistant *Escherichia coli*. *Scientia Naturalis*, 1(1), 12–16.

© 2025 Scientia Naturalis

47 need for alternative antibacterial agents derived from
48 natural sources.

49 On the other hand, mangrove plants represent
50 a promising reservoir of bioactive secondary
51 metabolites due to their adaptation to extreme
52 coastal environments. *Rhizophora mucronata* L.
53 (Rhizophoraceae), a widely distributed mangrove
54 species, has been reported to contain diverse
55 phytochemical constituents, including alkaloids,
56 flavonoids, phenolics, peptides, saponins, and
57 terpenoids, many of which exhibit antimicrobial
58 activity [7,8]. Previous studies have demonstrated
59 inhibitory effects of *R. mucronata* leaf extracts against
60 bacterial pathogens such as *E. coli*, *Aeromonas* sp.,
61 *Streptococcus* sp., and *Edwardsiella* sp., as well as
62 antifungal activity against *Penicillium digitatum* [9].

63 Despite these findings, limited information is
64 available regarding the antibacterial activity of
65 specific chromatographic fractions, particularly
66 those with retention factor (R_f) values greater
67 than 0.5. Fraction-based investigation is essential to
68 narrow down bioactive constituents and enhance
69 the likelihood of isolating potent antibacterial
70 compounds. Therefore, this study aims to evaluate
71 the *in vitro* antibacterial activity of the methanolic
72 leaf extract fraction ($R_f > 0.5$) of *R. mucronata* against
73 antibiotic-resistant *Escherichia coli*, contributing to
74 the ongoing search for plant-derived alternatives to
75 conventional antibiotics.

76 2 Methodology

77 2.1 General

78 The instruments used in this study included an
79 analytical balance (Kern), rotary evaporator (Eyela
80 N-1000), incubator (Memmert INB 500), autoclave
81 (Tommy SX-300/500/700), laminar airflow cabinet
82 (Safe Fast Elite 212 SD), UV lamp (UVGL-25), hot
83 plate (Akebono), drying oven (Jouan), refrigerator
84 (LG), and a thin-layer chromatography (TLC) system.
85 Standard laboratory glassware consisted of Pyrex
86 Petri dishes, beakers, test tubes, separating funnels,
87 graduated cylinders, Erlenmeyer flasks, volumetric
88 pipettes, dropper pipettes, and 1.5 mL cuvettes.
89 Micropipettes included a Pipetteman P20 (2–20 μ L)
90 and an Eppendorf micropipette (100–1000 μ L).

91 Additional laboratory materials comprised calipers,
92 aerators, sterile cotton swabs, inoculation loops, spirit
93 lamps, TLC capillary tubes, aluminum foil, filter paper,
94 forceps, sterile gauze, tissue paper, gloves, labeling
95 materials, microwave oven, paper discs, sample

96 containers, and other routine laboratory consumables
97 required for extraction, chromatographic separation,
98 and antibacterial assays.

99 2.2 Extraction and Isolation

100 Fresh leaves of *Rhizophora mucronata* were air-dried
101 for 3–5 days and subsequently cut into small
102 pieces to enhance solvent penetration and extraction
103 efficiency [1]. The dried material was macerated
104 in 70% methanol for 3 \times 24 h. The extract was
105 filtered and concentrated at 60 °C using a rotary
106 evaporator to yield 1.98 g of crude extract (coded
107 A17A01). The crude extract was partitioned using
108 a chloroform:methanol:water (1:1:1, v/v) solvent
109 system, resulting in two fractions: a semipolar fraction
110 (F1B16, 0.02 g) and a polar fraction (F1B17, 1.96 g).

111 Based on bioactivity screening, F1B17 was selected
112 for further purification. Fraction F1B17 was subjected
113 to elution using a methanol:ethyl acetate solvent
114 system (10:90, v/v), followed by separation using
115 Thin Layer Chromatography (TLC). Compounds
116 exhibiting retention factor (Rf) values greater than
117 0.5 were collected for further evaluation. The selected
118 fraction ($R_f > 0.5$) was subsequently partitioned
119 using methanol:dichloromethane (1:1, v/v), yielding
120 two sub-fractions: F2B10 (methanol fraction) and
121 F2B11 (dichloromethane fraction). Both sub-fractions
122 were subjected to phytochemical screening using
123 Dragendorff's reagent and cerium sulfate to detect
124 alkaloids and hydrocarbons, respectively.

125 2.3 Bacterial Strain and Culture Conditions

126 A clinical isolate of *Escherichia coli* O157:H7 was
127 obtained from the Regional General Hospital (RSUD)
128 Dr. Zainoel Abidin, Banda Aceh, Indonesia, and
129 maintained at the Microbiology Laboratory, Faculty
130 of Medicine, Universitas Syiah Kuala prior to
131 antibacterial testing. Bacterial colonies grown on
132 Nutrient Agar (NA) were aseptically transferred using
133 a sterile inoculation loop into a tube containing
134 0.9% NaCl solution and homogenized with a vortex
135 mixer for 15 s. The turbidity of the suspension was
136 adjusted to McFarland standard No. 3 (approximately
137 10 CFU/mL) and subsequently diluted with sterile
138 0.9% NaCl to obtain a final concentration of 10
139 CFU/mL [14], consistent with the standard aerobic
140 bacterial sensitivity range (10–10 CFU/mL) [14]. The
141 optical density was measured at 625 nm using a
142 spectrophotometer, and suspensions with absorbance
143 values between 0.08 and 0.13 were considered
144 standardized and suitable for antibacterial assays [14].

145 2.4 Bioactivity Assay Procedure

146 The antibacterial activity of the F2B10 fraction was
 147 evaluated using the disc diffusion method against
 148 *Escherichia coli* O157:H7. A standardized bacterial
 149 suspension was uniformly inoculated onto sterile
 150 Nutrient Agar (NA) plates using the spread plate
 151 technique. The suspension was evenly distributed
 152 across the agar surface in three directions, rotating
 153 the Petri dish by 60° between streaking steps to
 154 ensure homogeneous bacterial coverage. Sterile paper
 155 discs were impregnated with the F2B10 fraction at
 156 concentrations of 20, 40, 60, 80, and 100 µg/mL and
 157 carefully placed onto the inoculated agar surface
 158 using sterile forceps, with gentle pressure applied to
 159 ensure full contact. Discs containing 2% dimethyl
 160 sulfoxide (DMSO) served as the negative control,
 161 while chloramphenicol discs (30 µg/mL) were used
 162 as the positive control [4,5]. All plates were incubated
 163 at 37 °C for 12–24 h. After incubation, antibacterial
 164 activity was assessed by measuring the diameter of the
 165 inhibition zones (mm) using a digital caliper [6].

166 3 Results

167 Partitioning of the crude methanolic extract
 168 (A17A01) of *Rhizophora mucronata* leaves using
 169 chloroform:methanol:water (1:1:1, v/v) yielded two
 170 fractions: a semipolar fraction (F1B16, 0.02 g) and a
 171 polar fraction (F1B17, 1.96 g). Bioactivity screening
 172 against resistant *Escherichia coli* demonstrated that
 173 F1B17 exhibited a larger inhibition zone (8.25 mm),
 174 identical to that of chloramphenicol, and greater than
 175 both F1B16 and the crude extract (Tables 1 and 2).
 176 These findings indicate enrichment of antibacterial
 177 constituents in the polar fraction following solvent
 178 partitioning.

Table 1. Inhibition zone diameters of crude extract A17A01 against antibiotic-resistant *Escherichia coli*.

Sample	Concentration	Inhibition Zone Diameter (mm)
A17A01	100 µg/mL	7.25
DMSO (-)	2%	0
Chloramphenicol (+)	30 µg/mL	7.75

Table 2. Inhibition zone diameters of crude extract and fractions against antibiotic-resistant *Escherichia coli*.

Sample	Concentration	Inhibition Zone Diameter (mm)
A17A01	100 µg/mL	7.75
F1B16	100 µg/mL	7.25
F1B17	100 µg/mL	8.25
DMSO (-)	2%	0.0
Chloramphenicol (+)	30 µg/mL	7.75

179 Further fractionation of F1B17 by elution and thin-layer
 180 chromatography (TLC) revealed compounds with

181 retention factor ($R_f > 0.5$). Subsequent partitioning
 182 of this fraction produced two sub-fractions: F2B10
 183 (methanol fraction) and F2B11 (dichloromethane
 184 fraction). Phytochemical screening confirmed the
 185 presence of alkaloids in F2B10 and hydrocarbons in
 186 F2B11 (Table 3).

Table 3. Phytochemical screening results of fractions F2B10 and F2B11.

Name of Compound	Reagent	Discoloration	Remark	
			F2B10	F2B11
Hydrocarbons	Cerium sulfate	Blackish color spots	++	-
Alkaloid	Dragendorff	Orange colored spots	++	+

Remark: (++) Moderate; (+) Weak; (-) None.

187 Interestingly, since antibacterial assays showed that
 188 F2B10 exhibited a larger inhibition zone (8.50 mm)
 189 compared to F2B11 (7.50 mm) and the standard
 190 antibiotic chloramphenicol (7.00 mm). These results
 191 demonstrate that F2B10 possessed the strongest
 192 antibacterial activity among the tested fractions.
 193 Dose-response evaluation of F2B10 at concentrations
 194 of 20, 40, 60, 80, and 100 µg/mL showed measurable
 195 antibacterial effects across all concentrations (Table 4).

Table 4. Inhibition zone diameters of fractions F2B10 and F2B11 against antibiotic-resistant *Escherichia coli*.

Sample	Concentration	Inhibition Zone Diameter (mm)
F2B10	100 µg/mL	8.50
F2B10	80 µg/mL	7.70
F2B10	60 µg/mL	7.60
F2B10	40 µg/mL	7.55
F2B10	20 µg/mL	7.50
F2B11	100 µg/mL	7.50
DMSO (-)	2%	0.0
Chloramphenicol (+)	30 µg/mL	7.75

196 4 Discussion

197 The initial bioactivity screening demonstrated that
 198 the crude methanolic extract (A17A01) exhibited
 199 an inhibition zone comparable to chloramphenicol
 200 (7.25 mm), while the negative control (2% DMSO)
 201 showed no inhibitory effect. This confirms that the
 202 observed antibacterial activity was attributable to
 203 bioactive constituents within the extract rather than
 204 solvent interference. The presence of antibacterial
 205 compounds in *Rhizophora mucronata* leaves is consistent
 206 with previous reports identifying diverse secondary
 207 metabolites, including alkaloids, flavonoids, phenolics,
 208 terpenoids, peptides, and saponins, as contributors to
 209 antimicrobial activity [2–4].

210 Bioactivity-guided fractionation via Thin Layer
 211 Chromatography (TLC) enabled the enrichment
 212 of active constituents, particularly within fractions

213 exhibiting retention factor (R_f) values greater than 0.5.
214 The selection of fractions based on chromatographic
215 mobility reflects differential polarity and affinity
216 of bioactive compounds toward the stationary and
217 mobile phases. Visualization using cerium sulfate and
218 Dragendorff's reagents further supported the presence
219 of alkaloid-type compounds in the active fraction.

220 Among the sub-fractions obtained, F2B10 displayed
221 superior antibacterial activity compared to F2B11
222 and even surpassed chloramphenicol at equivalent
223 concentrations. The dose-response evaluation of
224 F2B10 revealed a clear concentration-dependent
225 increase in inhibition zone diameter, reaching
226 8.50 mm at 100 μ g/mL. This pattern suggests a
227 pharmacologically relevant interaction between the
228 active compounds and bacterial cellular targets, where
229 higher concentrations enhance disruption of essential
230 microbial processes such as membrane integrity,
231 nucleic acid synthesis, or protein biosynthesis [10–13].

232 The stronger activity observed in F2B10 relative to
233 F2B11 is consistent with phytochemical screening
234 results indicating the presence of alkaloids in F2B10.
235 Alkaloids are well-documented antimicrobial agents
236 that can intercalate with DNA, inhibit topoisomerase
237 activity, alter membrane permeability, and disrupt
238 enzymatic pathways critical for bacterial survival [1].
239 In contrast, the hydrocarbon-rich fraction (F2B11)
240 exhibited weaker antibacterial activity, suggesting
241 that non-polar constituents may contribute less
242 significantly to antimicrobial efficacy in this system.
243 The polarity of F2B10 and its methanol solubility
244 further support the hypothesis that polar alkaloid
245 compounds are primarily responsible for the observed
246 antibacterial effect.

247 These findings align with previous studies reporting
248 antibacterial properties of secondary metabolites
249 from *R. mucronata* [2,3]. Notably, fractions with
250 higher chromatographic mobility ($R_f > 0.5$) may
251 contain moderately polar compounds with enhanced
252 biological activity. Given the escalating global
253 challenge of antibiotic resistance, the identification
254 of plant-derived fractions capable of inhibiting
255 resistant *Escherichia coli* is of considerable therapeutic
256 relevance.

257 However, while inhibition zone measurements provide
258 preliminary evidence of antibacterial potential, further
259 investigations are required to determine minimum
260 inhibitory concentration (MIC), minimum bactericidal
261 concentration (MBC), cytotoxicity profiles, and
262 structural elucidation of the active compounds.

263 Comprehensive spectroscopic analyses (e.g., NMR,
264 MS) would be essential to characterize the alkaloid
265 constituents responsible for the activity observed in
266 F2B10. Such studies would strengthen the potential
267 of *R. mucronata*-derived metabolites as candidates for
268 novel antimicrobial development.

269 5 Conclusion

270 The present study demonstrates that the methanolic
271 leaf extract of *Rhizophora mucronata* and its
272 chromatographic fractions exhibit measurable
273 antibacterial activity against resistant *Escherichia*
274 *coli* O157:H7. Bioactivity-guided fractionation
275 identified F2B10 ($R_f > 0.5$) as the most active fraction,
276 displaying a clear dose-dependent response and
277 achieving a maximum inhibition zone of 8.50 mm at
278 100 μ g/mL. Notably, this activity exceeded that of the
279 reference antibiotic chloramphenicol under the tested
280 conditions.

281 Phytochemical screening confirmed the presence
282 of alkaloid constituents in F2B10, suggesting that
283 polar, alkaloid-rich compounds are primarily
284 responsible for the observed antibacterial
285 effect. These findings highlight the therapeutic
286 potential of *R. mucronata*-derived secondary
287 metabolites as promising candidates for alternative
288 antimicrobial development, particularly in addressing
289 antibiotic-resistant pathogens. Further investigations
290 involving compound purification, structural
291 elucidation, and mechanistic studies are necessary to
292 validate their pharmacological potential and explore
293 their suitability for future drug development.

294 Data Availability Statement

295 Data will be made available on request.

296 Author Contributions

297 N.N. conceptualized and designed the study and
298 was responsible for methodology development,
299 formal analysis, laboratory investigation, data
300 curation, visualization, and preparation of the original
301 manuscript draft. S.A. conducted validation of the
302 research findings. All authors have read and approved
303 the final version of the manuscript prior to publication.

304 Acknowledgement

305 The authors sincerely acknowledge the Faculty of
306 Marine and Fisheries and the Faculty of Medicine,
307 Universitas Syiah Kuala, for providing laboratory
308 facilities and institutional research support. The

309 authors also express their gratitude to the technical
 310 staff of the Marine Chemistry and Microbiology
 311 Laboratories for their valuable assistance throughout
 312 the experimental work. Special appreciation is
 313 extended to RSUD Dr. Zainoel Abidin, Banda Aceh, for
 314 providing the clinical isolate of *Escherichia coli* O157:H7
 315 utilized in this study.

316 Funding

317 This work was supported without any funding.

318 Conflicts of Interest

319 The authors declare no conflicts of interest.

320 Ethical Approval and Consent to Participate

321 Not applicable.

322 References

323 [1] Amirkaveei, S., & Behbahani, B. A. (2011).
 324 Antimicrobial effect of mangrove extract on *Escherichia*
 325 *coli* and *Penicillium digitatum*. In *Proceedings of the*
 326 *International Conference on Food Engineering and*
 327 *Biotechnology* (IPCBEE Vol. 9, pp. 185–188). Singapore.
 328 [[CrossRef](#)]

329 [2] Astarina, N. W. G., Astuti, K. W., & Warditiani, N. K.
 330 (2013). Phytochemical screening of methanol extract
 331 of Bangle rhizome (*Zingiber purpureum* Roxb.). *Jurnal*
 332 *Farmasi Udayana*. [[CrossRef](#)]

333 [3] Bobbarala, V. (2012). *Antimicrobial Agents*. Intech,
 334 Croatia. [[CrossRef](#)]

335 [4] Bombardelli, E. (1991). Technologies for the
 336 processing of medicinal plants. In R. O. B. Wijesekera
 337 (Ed.), *The Medicinal Plant Industry* (pp. 185–196). CRC
 338 Press, Boca Raton, FL, USA. [[CrossRef](#)]

339 [5] Darsana, I. G. O. (2012). The potential of Binahong
 340 leaves (*Anredera cordifolia*) in inhibiting the growth
 341 of *Escherichia coli* in vitro. *Indonesia Medicus Veterinus*,
 342 1(3), 337–351. [[CrossRef](#)]

343 [6] Davis, W. W., & Stout, T. R. (1971). Disc plate methods
 344 of microbiological antibiotic assay. *Microbiology*, 22,
 345 659–665. [[CrossRef](#)]

346 [7] Djoepri, M. R. (2006). Isolation and identification of
 347 *Escherichia coli* in sausage and nugget foods. *Animal*
 348 *Husbandry Research and Development Center, Center for*
 349 *Veterinary Research*, 265–268. [[CrossRef](#)]

350 [8] Harborne, J. B. (1987). *Phytochemical Methods* (2nd
 351 ed., K. Padmawinata, Trans.). Bandung Institute
 352 of Technology, Bandung, Indonesia (pp. 58–84).
 353 [[CrossRef](#)]

354 [9] Kang, S. G., Park, H. U., Lee, H. S., Kim, H. T., & Lee, K.
 355 J. (2000). New -lactamase inhibitory protein (BLIP-1)
 356 from *Streptomyces exfoliates* SMF 19 and its role in

357 morphological differentiation. *Journal of Biological*
 358 *Chemistry*, 275(22), 16851–16856. [[CrossRef](#)]

359 [10] Karlina, C. Y., Muslimin, I., & Guntur, T. (2013).
 360 Antibacterial activity of *Portulaca oleracea* L. extract
 361 against *Staphylococcus aureus* and *Escherichia coli*. *Jurnal*
 362 *LenteraBio*, 2(1), 87–93. [[CrossRef](#)]

363 [11] Karsinah. (1994). Gram-negative bacteria. In H. Sujudi
 364 (Ed.), *Medical Microbiology* (pp. 35–63). Bina Rupa
 365 Aksara, Jakarta, Indonesia. [[CrossRef](#)]

366 [12] Kosala, K. (2010). Antibacterial activity of ethanol
 367 extract of *Vitex pinnata* leaves against diarrhea-causing
 368 bacteria using the disk diffusion method. Thesis,
 369 Faculty of Medicine, University of Mulawarman,
 370 Samarinda, Indonesia. [[CrossRef](#)]

371 [13] Kuete, V. (2011). Antimicrobial activities of methanol
 372 extract and compounds from *Artocarpus communis*.
 373 *BMC Complementary and Alternative Medicine*, 11, 42.
 374 [[CrossRef](#)]

375 [14] Mbah, J. A., Ngemenya, M. N., Abawah, A. L., Babiaka,
 376 S. B., Nubed, L. N., Nyongbela, K. D., Lemuh, N. D., &
 377 Efange, S. M. N. (2012). Antimicrobial agents. *Annals*
 378 *of Clinical Microbiology and Antimicrobials*, 11, 1–10.
 379 [[CrossRef](#)]

380 [15] Pimpliskar, M. R., Jadhav, R. N., & Jadhav, B. L. (2011).
 381 Study on antimicrobial principles of *Rhizophora* species
 382 along the Mumbai coast. *Journal of Aquatic Biology*,
 383 26(1), 6–11. [[CrossRef](#)]