

Bioactive Alkaloids from *Callyspongia* sp.: A Marine Source of Antibacterial Agents Against Drug-Resistant *Escherichia coli*

Andria Mauliza^{1,*}, Sri Agustina¹ and Sofyatuddin Karina¹

¹ Department of Marine Science, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

1 Abstract

2 This study evaluated the antibacterial potential
3 of secondary metabolites isolated from the
4 Indonesian marine sponge *Callyspongia* sp.
5 against antibiotic-resistant *Escherichia coli*.
6 Sponge specimens collected from Sabang waters
7 were subjected to extraction, bioassay-guided
8 fractionation, and chromatographic purification.
9 Fourier transform infrared (FTIR) analysis of
10 the active compound revealed absorption bands
11 at 1637.4 cm¹ (C=N) and 1407.2 cm¹ (C-N),
12 consistent with a hydroxylated alkaloid structure.
13 Antibacterial activity was determined using the disk
14 diffusion method. The isolated compound exhibited
15 dose-dependent inhibition, producing inhibition
16 zones of 7.0 mm at 20 µg/mL and 8.25 mm at 100
17 µg/mL. Chloramphenicol (35 µg/mL) showed a 7.5
18 mm inhibition zone. These findings suggest that
19 *Callyspongia* sp. represents a promising source of
20 alkaloid-based antibacterial agents against resistant
21 pathogens.

22 **Keywords:** Alkaloid, *Callyspongia* sp., *Escherichia coli*,
23 Antibiotic-resistant bacteria.

1 Introduction

25 *Escherichia coli* (*E. coli*) is a gram-negative bacterium
26 commonly found in the gastrointestinal tract of
27 humans and animals. While most strains are harmless,
28 certain pathogenic variants can cause severe illnesses,
29 including diarrhea, urinary tract infections, and sepsis
30 [1]. Globally, diarrheal diseases remain a major public
31 health concern, with nearly 1.7 billion cases reported
32 annually among children, resulting in approximately
33 525,000 deaths among children under five years of age
34 [2].

35 The widespread use and misuse of antibiotics have led
36 to the emergence of antibiotic-resistant *E. coli* strains,
37 complicating treatment strategies and increasing
38 morbidity and mortality rates. Resistance mechanisms
39 including the production of extended-spectrum
40 -lactamases (ESBLs), activation of efflux pumps, and
41 biofilm formation enable these bacteria to survive
42 antibiotic exposure [3]. Consequently, there is an
43 urgent need to discover and develop new antimicrobial
44 agents capable of effectively combating resistant
45 bacterial strains. In this context, marine ecosystems
46 have emerged as a promising source of novel bioactive
47 compounds. Marine sponges, in particular, are prolific
48 producers of secondary metabolites with diverse
49 biological activities, including antibacterial, antiviral,
50 antifungal, and anticancer properties [4]. The
51 genus *Callyspongia*, widely distributed in tropical and
52 subtropical marine environments, has been reported
53 to produce various bioactive compounds, notably

Academic Editor:
Andi Setiawan

Submitted: June 3, 2025
Accepted: June 19, 2025
Published: June 25, 2025

Vol. 1, No. 1, 2025.
<https://dx.doi.org/xx.xxxx/xxxx>

*Corresponding author:
Andria Mauliza
andriamauliza@hotmail.com

Citation

Mauliza, A., Agustina, S., & Karina, S. (2025). Bioactive Alkaloids from *Callyspongia* sp.: A Marine Source of Antibacterial Agents Against Drug-Resistant *Escherichia coli*. *Scientia Naturalis*, 1(1), 1–6.

© 2025 Scientia Naturalis

54 alkaloids, which exhibit significant antimicrobial
55 activities [5].

56 However, despite the therapeutic potential of
57 sponge-derived compounds, the ability of bacteria
58 to develop resistance remains a challenge. Bacteria
59 can adapt to bioactive compounds through several
60 mechanisms, such as modifying drug targets,
61 decreasing drug uptake, or increasing efflux
62 activity [6]. Therefore, continuous exploration
63 and characterization of novel compounds from marine
64 sponges are essential to stay ahead in the fight against
65 antibiotic-resistant pathogens. This study aims
66 to investigate the antibacterial activity of alkaloid
67 compounds isolated from the Indonesian marine
68 sponge *Callyspongia* sp. against antibiotic-resistant
69 *E. coli* strains. Through isolation, characterization,
70 and bioactivity evaluation, this research seeks to
71 contribute to the development of new antimicrobial
72 agents derived from marine natural products.

73 2 Methodology

74 2.1 General

75 The instruments and laboratory equipments used
76 in this study included an analytical balance (Kern),
77 a Fourier-transform infrared (FTIR) spectrometer,
78 a rotary evaporator (Eyela N-1000), an incubator
79 (Memmert Type INB 500), an autoclave (Tommy
80 SX-300 / 500/700), and a laminar airflow cabinet (Safe
81 Fast Elite 212 SD). Additional equipment included
82 a UV lamp (UVGL-25), hot plate (Akebono), oven
83 (Jouan), refrigerator (LG), thin-layer chromatography
84 (TLC) apparatus, column chromatography setup, and
85 standard glassware such as Petri dishes, beakers, test
86 tubes, and separatory funnels (Pyrex). Micropipettes
87 used were Pipetteman P20 F123563 (2–20 μ L)
88 and Eppendorf micropipettes (100–1000 μ L). Other
89 standard laboratory tools and consumables were
90 utilized as required.

91 2.2 Bacterial Strain and Culture Conditions

92 A clinical isolate of antibiotic-resistant *Escherichia*
93 *coli* O157:H7 was obtained from a patient at the
94 Zainoel Abidin General Hospital, Banda Aceh,
95 Indonesia. The strain was maintained and cultured
96 at the Microbiology Laboratory, Faculty of Medicine,
97 Universitas Syiah Kuala. For the preparation of
98 bacterial cultures, 2.8 g of nutritional broth (NB) was
99 dissolved in 100 mL of distilled water and sterilized
100 by autoclaving at 121 °C for 15 minutes. After cooling
101 under aseptic conditions in a laminar airflow cabinet,
102 the medium was supplemented with chloramphenicol

103 (30 μ g/mL), poured into sterile Petri dishes and
104 allowed to solidify at room temperature. The resistant
105 *E. coli* strain was inoculated onto the medium using the
106 streak plate method in a zigzag pattern and incubated
107 at 37°C for 24 hours [12].

108 2.3 Biomaterial

109 Specimens of the marine sponge *Callyspongia* sp.
110 were collected from the coastal waters of Sabang,
111 Indonesia, in March 2017. The sponge samples
112 were morphologically identified, thoroughly washed
113 with seawater to remove debris, chopped into small
114 pieces, and air-dried. The dried material was
115 macerated in methanol P.A. for 72 hours (3 \times 24-hour
116 cycles). The extract was filtered and concentrated
117 under reduced pressure using a rotary evaporator to
118 obtain the crude methanolic extract. Phytochemical
119 screening was performed at the Marine Chemistry
120 Laboratory, while antibacterial assays were conducted
121 at the Microbiology Laboratory, Faculty of Medicine,
122 Universitas Syiah Kuala.

123 2.4 Extraction and Isolation

124 A total of 1.48 g of the crude methanolic extract was
125 subjected to solvent partitioning using chloroform,
126 methanol, and water (1:1:1, v/v/v). The mixture
127 was vigorously shaken and allowed to stand for
128 phase separation. Two fractions were obtained: a
129 semi-polar chloroform-rich fraction (A1B17) and a
130 polar methanol–water-rich fraction (A1B18). Each
131 fraction was evaporated to dryness and evaluated
132 for antibacterial activity against the resistant *E. coli*
133 strain. The fraction exhibiting the largest inhibition
134 zone was selected for further purification. The most
135 active fraction (A1B18) was subjected to gradient
136 column chromatography using silica gel as the
137 stationary phase and dichloromethane–methanol
138 mixtures of increasing polarity as the mobile
139 phase. Two subfractions, A12B03 and A12B04, were
140 collected. Separation was monitored by thin-layer
141 chromatography (TLC). Subfraction A12B04, which
142 displayed a single major spot on TLC, was selected for
143 further characterization.

144 3 Results

145 3.1 Phytochemical screening

146 Qualitative phytochemical profiling of the methanolic
147 crude extract (A1B12) derived from the marine
148 sponge *Callyspongia* sp. revealed a chemically diverse
149 metabolite composition, encompassing alkaloids,
150 peptides, steroids, terpenoids, and hydrocarbons.

151 The presence of alkaloids was evidenced by the
 152 formation of an orange precipitate following
 153 treatment with Dragendorff's reagent, indicative of
 154 nitrogen-containing heterocyclic compounds. Peptidic
 155 constituents were confirmed by the development
 156 of a characteristic purple coloration upon reaction
 157 with ninhydrin, suggesting the presence of primary
 158 and secondary amine functionalities. Steroidal
 159 and terpenoid metabolites were identified through
 160 Salkowski's and Liebermann–Burchard assays,
 161 respectively, based on their diagnostic color transitions.
 162 Hydrocarbon constituents were inferred from the
 163 observation of dark, UV-active spots on thin-layer
 164 chromatography (TLC) plates. Notably, flavonoids
 165 were not detected in the crude extract (Table 1),
 166 consistent with the predominantly marine origin of
 167 the sample and its characteristic secondary metabolite
 168 profile.

Table 1. Qualitative phytochemical screening of methanolic extract (A1B12) from *Callyspongia* sp.

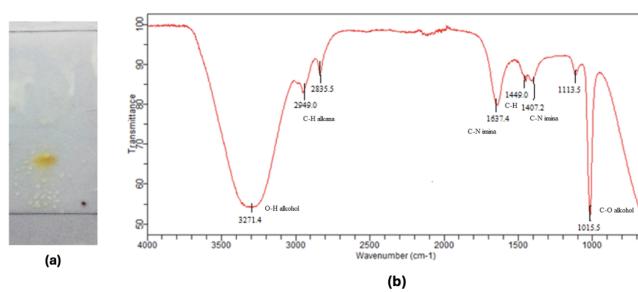
Secondary Metabolite	Reagent	Remark
Hydrocarbon	Cerium sulfate	+++
Alkaloid	Dragendorff	+++
Peptide	Ninhydrin	+++
Terpenoid	Liebermann–Burchard	+++
Steroid	Salkowski	+++
Flavonoid	Base reagent	–

3.2 Primary Bioactivity test

170 The antibacterial activity of the crude extract A1B12
 171 was evaluated against antibiotic-resistant *Escherichia*
 172 *coli* using the disk diffusion assay. An inhibition zone
 173 of 9.5 mm was observed at an extract concentration
 174 of 100 µg/mL, whereas the positive control exhibited
 175 an inhibition zone of 9.0 mm (Table 2). Based on
 176 these results, extract A1B12 was selected for further
 177 fractionation and subsequent analyses.

Table 2. Antibacterial activity of crude extract A1B12 against antibiotic-resistant *Escherichia coli* determined by disk diffusion assay.

Sample	Concentration	Inhibition Zone (mm)
Chloramphenicol (+)	35 µg/mL	9.0
DMSO (–)	2%	0
A1B12	100 µg/mL	9.5


3.3 Isolation of active compound

178 Since the crude extract exhibited antibacterial activity,
 179 it was subjected to liquid–liquid partitioning using a
 180 chloroform–methanol–water system (1:1:1, v/v/v) to
 181 achieve polarity-based fractionation. This procedure

182 afforded two fractions: a semi-polar fraction (A1B17,
 183 0.07 g) and a polar fraction (A1B18, 1.41 g). Qualitative
 184 phytochemical profiling indicated that A1B18 was
 185 enriched in nitrogen-containing constituents,
 186 particularly alkaloids and peptidic compounds,
 187 whereas A1B17 predominantly contained non-polar
 188 hydrocarbon components. Antibacterial evaluation
 189 against resistant *Escherichia coli* demonstrated that
 190 A1B18 produced a larger inhibition zone (8.5 mm)
 191 than A1B17 (7.5 mm), suggesting that the antibacterial
 192 activity is primarily associated with polar, nitrogenous
 193 metabolites. On the basis of these findings, fraction
 194 A1B18 was prioritized for further purification by
 195 silica gel column chromatography to isolate the active
 196 constituent(s).

3.4 Characterization of the active compound

197 Silica gel column chromatography of fraction
 198 A1B18, employing a gradient elution system
 199 of dichloromethane–methanol, afforded two
 200 subfractions: A12B03 (0.11 g) and A12B04 (0.30
 201 g). Thin-layer chromatography (TLC) analysis
 202 indicated that A12B04 contained a single predominant
 203 component, as evidenced by a single major spot under
 204 UV detection (Figure 1a). Structural characterization
 205 of A12B04 by Fourier transform infrared (FTIR)
 206 spectroscopy revealed diagnostic absorption bands
 207 at 3271.4 cm^{–1} (O–H stretching), 2949.0 and 2835.0
 208 cm^{–1} (aliphatic C–H stretching), 1637.4 cm^{–1} (C=N
 209 stretching), and 1407.2 cm^{–1} (C–N stretching) (Figure
 210 1b). The presence of imine (C=N) and C–N
 211 functionalities, together with hydroxyl stretching,
 212 is consistent with a hydroxylated alkaloid framework.

Figure 1. Dragendorff Visualization (a), FTIR spectra (b).

213 The antibacterial activity of subfraction A12B04 was
 214 further evaluated across a concentration range of
 215 20–100 µg/mL to assess dose-dependent effects. As
 216 summarized, inhibition zones of 7.0, 7.15, 7.25, 8.10,
 217 and 8.25 mm were observed at concentrations of 20,
 218 40, 60, 80, and 100 µg/mL, respectively (Figure 2).
 219 The progressive increase in inhibition zone diameter
 220

222 with increasing concentration indicates a clear
223 dose-dependent antibacterial response, supporting
224 the bioactivity of the isolated compound against
225 resistant *E.coli*.

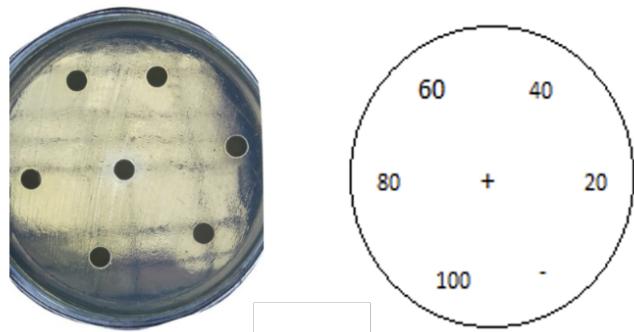


Figure 2. Bioactivity results

Table 3. Dose-dependent antibacterial activity of subfraction A12B04 against antibiotic-resistant *Escherichia coli* determined by disk diffusion assay.

Compound	Concentration	Inhibition Zone (mm)
Chloramphenicol (+)	35 μ g/mL	7.52
DMSO (-)	2%	0.00
A12B04	100 μ g/mL	8.27
A12B04	80 μ g/mL	8.13
A12B04	60 μ g/mL	7.25
A12B04	40 μ g/mL	7.15
A12B04	20 μ g/mL	7.06

4 Discussion

226 Phytochemical profiling of the methanolic extract
227 (A1B12) of *Callyspongia* sp. revealed a chemically
228 diverse metabolite composition, including alkaloids,
229 peptides, steroids, terpenoids, and hydrocarbons.
230 Marine sponges are well established as prolific
231 producers of structurally unique secondary
232 metabolites with pronounced biological activities,
233 particularly nitrogen-containing compounds. The
234 absence of flavonoids is consistent with previous
235 reports, as these metabolites are predominantly
236 biosynthesized by terrestrial plants rather than
237 marine invertebrates [7]. Among the detected
238 constituents, alkaloids and peptides are particularly
239 noteworthy due to their documented antimicrobial
240 properties. Marine-derived alkaloids have been
241 shown to exert antibacterial effects through multiple
242 mechanisms, including disruption of cell wall
243 biosynthesis, inhibition of nucleic acid replication,
244 and interference with protein synthesis pathways [8].
245 Antimicrobial peptides, in contrast, typically act via
246 membrane-targeting mechanisms, leading to pore
247 formation, membrane destabilization, and eventual
248

249 bacterial cell lysis [9]. The coexistence of these
250 metabolite classes in A1B12 suggests a multifactorial
251 basis for the observed antibacterial activity.

252 The crude extract A1B12 demonstrated moderate
253 inhibitory activity against antibiotic-resistant
254 *E.coli*, producing an inhibition zone of 9.5 mm,
255 slightly exceeding that of chloramphenicol (9.0
256 mm). Although classified as weak to moderate
257 according to standard interpretative criteria [10],
258 this level of activity is notable given that the extract
259 represents a complex and unrefined mixture tested
260 against a resistant clinical strain. These findings
261 support the presence of bioactive constituents and
262 justify subsequent bioassay-guided fractionation.
263 Liquid-liquid partitioning of A1B12 yielded a polar
264 fraction (A1B18) and a semi-polar fraction (A1B17),
265 with A1B18 exhibiting superior antibacterial activity
266 (8.5 mm inhibition zone). Phytochemical analysis
267 indicated enrichment of alkaloids and peptides in
268 the polar fraction, whereas A1B17 was dominated
269 by non-polar hydrocarbons. The enhanced activity
270 of A1B18 suggests that polar nitrogen-containing
271 metabolites are the principal contributors to the
272 antibacterial effect, consistent with previous studies
273 on sponge-derived alkaloids [11].

274 Further purification of A1B18 via silica gel column
275 chromatography afforded subfraction A12B04 as the
276 major constituent. FTIR analysis of A12B04 revealed
277 characteristic absorption bands corresponding to O-H,
278 C=N (imine), and C-N functionalities, supporting
279 its classification as a hydroxylated alkaloid. These
280 structural features are commonly associated with
281 bioactive marine alkaloids and are often implicated
282 in hydrogen-bonding interactions and nucleophilic
283 reactivity relevant to antibacterial mechanisms.
284 Dose-response evaluation of A12B04 demonstrated
285 a concentration-dependent increase in antibacterial
286 activity, with inhibition zones ranging from 7.0 mm
287 at 20 μ g/mL to 8.25 mm at 100 μ g/mL. The observed
288 trend indicates pharmacological responsiveness and
289 supports the hypothesis that A12B04 acts through
290 direct interaction with bacterial cellular targets. The
291 comparable activity of A12B04 at higher concentrations
292 to chloramphenicol further underscores its potential
293 as a lead scaffold for antibacterial development.

294 Collectively, these findings identify *Callyspongia*
295 sp. as a promising source of bioactive alkaloids
296 with activity against antibiotic-resistant *E. coli*.
297 Comprehensive structural elucidation using advanced
298 spectroscopic techniques (e.g., NMR and MS) and
299

299 mechanistic investigations are warranted to confirm
300 the molecular identity of A12B04 and to further define
301 its antibacterial mode of action.

302 5 Conclusion

303 This study demonstrates that the methanolic extract
304 of the marine sponge *Callyspongia* sp., collected from
305 the coastal waters of Sabang, Indonesia, contains
306 multiple classes of bioactive secondary metabolites,
307 including alkaloids, peptides, terpenoids, steroids,
308 and hydrocarbons. Among these, alkaloids and
309 peptidic constituents appear to be the primary
310 contributors to the observed antibacterial activity
311 against antibiotic-resistant *Escherichia coli* O157:H7.

312 Bioassay-guided fractionation revealed that
313 the polar fraction (A1B18) exhibited greater
314 antibacterial potency than the semi-polar fraction,
315 supporting the role of polar, nitrogen-containing
316 metabolites in mediating the bioactivity. Subsequent
317 chromatographic purification afforded a predominant
318 compound, A12B04, which was tentatively
319 characterized as a hydroxylated alkaloid based
320 on FTIR spectral features. The compound displayed
321 a concentration-dependent antibacterial response,
322 with inhibition zones comparable to those of
323 chloramphenicol at higher concentrations.

324 Therefore, these findings highlight *Callyspongia* sp.
325 as a promising marine source of alkaloid-based
326 antibacterial scaffolds. Comprehensive structural
327 elucidation (e.g., NMR and MS analyses) and
328 mechanistic investigations are necessary to confirm the
329 molecular identity of A12B04 and to further evaluate
330 its potential as a lead compound for the development
331 of therapeutics targeting multidrug-resistant bacterial
332 pathogens.

333 Data Availability Statement

334 Data will be made available on request.

335 Author Contributions

336 S.A. and S.K. contributed to the conceptualization of
337 the study. A.M. performed the methodology, formal
338 analysis, investigation, data curation, visualization,
339 and preparation of the original draft. Validation
340 was carried out by A.M., S.A., and S.K. All authors
341 have read and agreed to the published version of the
342 manuscript.

Acknowledgement

The authors gratefully acknowledge the Faculty of
Marine and Fisheries and the Faculty of Medicine
at Universitas Syiah Kuala for providing research
facilities and institutional support. The technical
assistance of the staff of the Marine Chemistry and
Microbiology Laboratories is sincerely appreciated.
The authors also thank RSUD Dr. Zainoel Abidin,
Banda Aceh, for granting access to the clinical isolate
of *Escherichia coli* O157:H7 used in this study.

Funding

This work was supported without any funding.

Conflicts of Interest

The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate

Not applicable.

References

- [1] World Health Organization. (2025). Diarrhoeal disease. Retrieved April 15, 2025, from <https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease>.
- [2] World Health Organization. (2025). *E. coli*. Retrieved April 18, 2025, from <https://www.who.int/news-room/fact-sheets/detail/e-coli>.
- [3] Álvarez-Martínez, F. J., Barrajón-Catalán, E., & Micol, V. (2020). Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. *Biomedicines*, 8(10), 405. [CrossRef]
- [4] Varjakzhan, D., Loh, J. Y., Yap, W. S., Yusoff, K., Seboussi, R., Lim, S. H. E., Lai, K. S., & Chong, C. M. (2021). Bioactive compounds from marine sponges: Fundamentals and applications. *Marine Drugs*, 19(5), 246. [CrossRef]
- [5] de Sousa, L. H. N., de Araújo, R. D., Sousa-Fontoura, D., Menezes, F. G., & Araújo, R. M. (2021). Metabolites from marine sponges of the genus *Callyspongia*: Occurrence, biological activity, and NMR data. *Marine Drugs*, 19(12), 663. [CrossRef]
- [6] Poirel, L., Madec, J. Y., Lupo, A., Schink, A. K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in *Escherichia coli*. *Microbiology Spectrum*, 6(4). [CrossRef]
- [7] Laport, M. S., Santos, O. C. S., & Muricy, G. (2009). Marine sponges: Potential sources of new antimicrobial drugs. *Current Pharmaceutical Biotechnology*, 10(1), 86–105. [CrossRef]

390 [8] Elissawy, A. M., Soleiman Dehkordi, E., Mehdinezhad, N., Ashour, M. L., & Mohammadi Pour, P. (2021).
391 Cytotoxic alkaloids derived from marine sponges:
392 A comprehensive review. *Biomolecules*, 11(2), 258.
393 [CrossRef]

394 [9] Hancock, R. E. W., Haney, E. F., & Gill, E. E. (2016).
395 The immunology of host defence peptides: Beyond
396 antimicrobial activity. *Nature Reviews Immunology*,
397 16(5), 321–334. [CrossRef]

398 [10] Alksne, L. E., & Projan, S. J. (2000). Bacterial virulence
399 as a target for antimicrobial chemotherapy. *Current
400 Opinion in Biotechnology*, 11(6), 625–636. [CrossRef]

401 [11] Hong, L. L., Ding, Y. F., Zhang, W., & Lin, H. W.
402 (2022). Chemical and biological diversity of new
403 natural products from marine sponges: A review
404 (2009–2018). *Marine Life Science & Technology*, 4(3),
405 356–372. [CrossRef]

406 [12] Bian, C., Wang, J., Zhou, X., Wu, W., & Guo, R. (2020).
407 Recent advances on marine alkaloids from sponges.
408 *Chemistry & Biodiversity*, 17(10), e2000186. [CrossRef]

409 [13] Mbah, J. A., Ngemenya, M. N., Abawah, A. L.,
410 Babiaka, S. B., Nubed, L. N., Nyongbela, K. D.,
411 Lemuh, N. D., & Efange, S. M. (2012). Bioassay-guided
412 discovery of antibacterial agents: In vitro screening
413 of *Peperomia vulcanica*, *Peperomia fernandopoiana*, and
414 *Scleria striatinux*. *Annals of Clinical Microbiology and
415 Antimicrobials*, 11, 10. [CrossRef]

416